What can UniDec do for You?

A UniDec Tutorial

Michael Marty michael.marty@chem.ox.ac.uk

Outline

Why UniDec?

- It's Fast!
- To Extract Intensities
- To Understand Complex Spectra
- To Visualize Charge Dimensions
- To Interpret Ion Mobility Data

How Does UniDec Work?

See Marty et Al. Anal. Chem. 2015, DOI: 10.1021/acs.analchem.5b00140 http://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b00140

The Layout

Loading Data

- Load data from File menu
 - Open Text File: May be either <x y> text file or <x y z> for IM-MS
 - Interface will automatically adjust for either MS or IM-MS data
 Open Raw File: Will convert .raw to text file and then open that file.
 - Needs "MassLynxRaw.dll" for MS and "cdt.dll" for IM-MS.
 - Water's will not allow us to distribute these files, but they can be obtained from Waters online at:
 - http://www.waters.com/waters/supportList.htm?cid=511442&locale=en GB&filter=documenttype|DWNL&locale=en GB
 - cdt.dll: Ion Mobility-Enabled MassLynx Raw Data Reader Interface Library, Support Number: DWNL134825112
 - Note: This is also often installed in C:\\DriftScope\lib.
 - MassLynxRaw.dll (32-bit): MassLynx Raw Data Reader Interface Library, Support Number: DWNL134815627
- Opening a file will create a folder next to the .txt file or in the .Raw folder called <filename>_unidecfiles
- All useful outputs, inputs, and figures (File > Save Figures) are stored here

Loading Data

- Save State will zip the _unidecfiles folder. Load State will unzip it and load everything back into the program
 - Note: This will overwrite the current configuration.
- Load External: load a _conf.dat from a previous run
- Look for these in the _unidecfiles folder
 Saves the current configuration as the default.
 Will load on opening the program on hitting the Load Default button.
 - Note: The lists in the Mass and Oligomer Tools as well as Manual Assignments are not saved.
- Advanced > Reset Factory Default will return all settings to the program defaults

Processing Data

- Limit m/z range
- Baseline subtraction
 - Minimum: Subtracts a flat line at the minimum if $n\neq 0$
 - Line: Takes the first n and last n data points, plots a line between the averages, and subtracts the line
 - Curved: See Morgner, Robinson. Anal. Chem., 2012, 84 (6).
 - Smaller *n* is a more drastic. Larger *n* is less drastic.

Smoothing

 Convolves raw data with a Gaussian of width n in units of data point number prior to binning.

Subtract Curved Subtract Minimum Subtract Line Subtract Curved

Process Data

to 40000.0

0.0

0.0

1.0

Th

Bin Size

- Sets how much the data will be linearized or compressed
- Compression improves speed of algorithm and helps to smooth noisy data.

Data Processing

m/z Range: 7000.0

Subtract Minimum

Gaussian Smoothing:

Bin Every:

Advanced Processing Data

- Intensity Threshold: Disallows m/z values where spectrum falls below this threshold
- Adduct Mass: Sets the mass of the electrospray adduct

$$- \frac{m}{z} = \frac{m_{species} + m_{adduct} * z}{z}$$

- Acceleration Voltage: Sets the ToF voltage in order to correct for detector efficiency.
- Choose how to bin and compress the data
 - Linear m/z
 - m/z axis is linear (500,501,...)
 - Bin Every sets spacing between bins
 - Set Linear Interpolated if you want to oversample the data (i.e. data is originally 500, 501,... but you want 500.1, 500.2,...
 - Linear resolution
 - m/z axis is nonlinear such that the difference between data points is proportional to the m/z value (500,501,...,1000,1002,...)
 - Bin Every sets the spacing at the minimum m/z value (1 in example)
 - Note: the peak width will also scale with m/z. Here the peak width is defined as the peak width at the minimum m/z value
 - As above, Interpolation can be used to oversample
 - Nonlinear
 - m/z axis depends strictly on the density of the raw data
 - Bin Every allows n points to be averaged together, yielding the mean m/z and intensity of each group

Linear m/z (Constant Δm/z)		
Linea	r m/z (Constant Δm/z)	
Linea	r resolution (Constant (m/z)/(∆m/z))	
Nonli	near	
Linea	r Interpolated	
Linea	r Resolution Interpolated	

IM-MS Data Processing

- Many parameters similar to MS
- Set Arrival Time range
- Baseline subtraction and smoothing allow incorporation of arrival time dimension, although this is often unnecessary
- Binning is always performed with linear m/z
- Pusher Interval allows conversion from bin number to arrival time.
 - AT = Bin * Pusher/1000
- Compress when converting
 - IM-MS data is often very memory intensive
 - Selecting this option compresses the data when it is converted before it gets imported and plotted as raw data
 - Try this if you are getting memory errors with IM-MS data

IM-MS Parameters

Linear Cell

$$\Omega = \frac{(18\pi)^{\frac{1}{2}}}{16} \frac{ze}{(k_b T)^{\frac{1}{2}}} \frac{1}{N} \frac{t_d V}{L^2} \frac{p_0}{p} \frac{T}{T_0} \sqrt{\frac{1}{\mu}}$$

- V: Voltage across cell
- p: Pressure in cell (Torr)
- T: Temperature of cell
- Mass of buffer gass (He is default)
- Instrumental dead time
 - $t_d = t_a t_o$
- L: Drift cell length in meters

Travelling Wave

$$- t'_d = t_d - \left(\frac{EDC}{1000} * \sqrt{\frac{m}{z}}\right)$$

- $\Omega' = \exp(CP1 * \ln(t'_d) + CP2)$
- $\quad \Omega = \Omega' * z * \sqrt{1/\mu}$

Ion Mobility Parameters ▼			
Linear Cell	Travelling Wave		
Voltage (V):	50.0		
Pressure (Torr):	1.76		
Temperature (°C):	23.0		
Gas Mass (Da):	4.0		
Dead Time (t ₀ in ms):	1.0		
Drift Cell Length (m)	0.18202		
Ion Mobility Parameters ▼			
C Linear Cell Travelling Wave			
Calibration Parameter 1: 0			
Calibration Parameter 2: 0			

28.0134

EDC Parameter:

Gas Mass (Da):

UniDec Controls

- Allowed Charge Range
- Allowed Mass Range
- Linear resolution of the zero-charge mass spectrum
- Peak full width half max for the three peak shape functions
 - Split G/L is a Gaussian on the low m/z side and Lorentzian on the high m/z side to give a long tail at higher m/z
 - Try fitting a peak using Tools > Peak Width Tool
- Run UniDec
 - Click to run, import, and plot the result
 - Error shows up along the bottom bar

Advanced UniDec Controls

Charge Smooth

- Width of charge smooth filter
- Almost always set to 1 unless using Mass Smooth or Isotope Mode instead, in which case it may be turned off if desired using 0

Mass Smooth

- Set mass difference and smooth width
- Mass difference will incorporate neighboring species of known mass, such as neighboring oligomers, to help determine the charge
- Best to use a width of 1 for on and 0 for off

Number of Iterations

- 100 seems to work well for nearly everything
- Isotope Mode
 - Uses Averagine model to project isotopic distributions, determine the charge state, and return the monoisotopic masses

Manual Mode

- Set list in Tools > Manual Assignment
- Forces m/z values within a defined window to be a defined charge

Mass List

- Set list in Tools > Oligomer and Mass Tools
- Turn on with the check box
- Set window size in the box in units of Da
- Masses will be limited to values in the list +/- the window size

Native Charge Offset Ranges

- Limits charges to a windowed offset from the predicted native charge
- $-z_{native} = 0.0467 * m^{0.533}$
- See Experimental > Plot Native Charge-Mass for additional tools
- Useful for eliminating extremely high or low charge states in complex samples

IM-MS Controls

- Allowed CCS Range
- Resolution of CCS sampling
- Peak full width half max arrival time dimension
 - Note: the peak is assumed to be Gaussian in arrival time and set to the user-defined peak shape function in m/z
- CCS Smooth Width
 - Similar to the charge and mass smooth filters
 - Uses the CCS difference defined above as the resolution of CCS sampling
 - Usually 0 but can be increased to account for unfolded charge states
- Native CCS Offset Range
 - Similar to Native Charge Offset
 - $\Omega_{native_He} = 4.06739 * m^{0.629424}$
 - $\Omega_{native_N_2} = 5.33311 * m^{0.613072}$

Plotting the Results

- Plots are interactive
 - Click and drag to zoom
 - Click to unzoom
- Figure 1: Fit to the experimental data
 - Tip: If you zoom into a region and right click, you can zero the intensity in that region
 - Useful if there are contaminants dominating the spectrum
- Figure 3: m/z vs. charge

Plotting the Results

- Figure 2: Zero-charge mass spectrum
 - Peaks are selected from this spectrum (see below)
 - Color and shapes match peak info list
 - Tip: Right clicking this plot gives integration results
 - If zoomed out and peaks are selected, it will integrate the peaks based on the specified windows
 - Right click spits out integral of zoomed region
 - If there is a single peak in the zoomed region, it will assign the integral to that peak and update the peak window
- Figure 5: Mass vs. charge

Peak Detection and Plotting

- Peak Detection picks from the zero-charge mass spectrum
 - Must be maximum within Peak Detection Window
 - Must be above proportional Peak Detection Threshold
- Normalization allows peaks to be normalized to the maximum or normalized to the sum of all peaks
- Peak Information
 - Shows symbol, Mass, Peak Height, Peak Area, and Name of each peak
 - The name can be assigned using Tools > Oligomer and Mass Tools
 - Colors and symbols correspond to Figures 2, 4, and 6
 - Can be sorted by mass, intensity, or area
 - Right click gives options related to Figure 4 and the list:
 - Delete peak from Figure 4
 - Isolate peak in Figure 4
 - Repopulate the list with all
 - Label Charge States in Figure 4
 - Manually select that peak's color
 - The overall color function for peaks can be set in the Additional Plotting Parameters

Peak Detection and Plotting

- Figure 4: Individual peaks
 - Adds peak markers for species above Plot Marker Threshold
 - Plots Individual Species button plots extracted species offset by the Species Separation
- Figure 6: Bar chart of peak intensities
 - Names are assigned in Tools > Oligomer and Mass Tools

Advanced Plotting Parameters

- Adjust 2D plots
 - Color map
 - Discrete Plot: Changes from continuous plot to discrete
- Publication Mode cleans up the plots and axes
- Select the deconvolved raw output vs. the reconvolved output that matches the data
- Marker Threshold and Species Separation specify parameters for Figure 4 (see above)
- Set integration range: Will integrate from peak-min to peak+max
- Plot Composite sums all of the curves in Figure 4 and plots it as a blue composite spectrum

- IM-MS Plots are 1D or 2D projections of two 3D matrices
 - m/z vs. Arrival Time vs. Charge
 - Mass vs. CCS vs. Charge
- These cubes show projections on each face

Useful Tools

Peak Width Tool

- Zoom into an isolated peak in the processed data
- Reset Range returns to the full data
- Select peak shape function
- A guess may be entered and plotted
- Fitting the peak shape will update the guess and print out an error
- Ok will send guess and function selection to main control panel, Cancel will leave them alone
- IM-MS
 - Fit in 1D MS to get m/z peak width
 - Flip m/z and AT to extract arrival time trace at the center of the m/z peak
 - Fit arrival time distribution to get Arrival Time peak width

Oligomer and Mass Tools

Tools to limit masses, determine oligomeric states, and restrain the algorithm

Oligomer and Mass Tools

- Oligomer Maker
 - Central platform for defining oligomeric species
 - Each row represents a separate subunit species
 - Define optional Base Offset,
 Monomer Mass, and range
 - Names are used for subunit number and may be blank
 - Add rows or clear list with buttons, delete specific elements with right click
 - Can Import from File usually with _ofile.dat suffix

Mass[n] = Base + n * Monomer

For integers *n* from Min # of Oligomers to Max # of Oligomers

Oligomer and Mass Tools

- Limit UniDec to masses in this list.
 - Can import from the current peak list or from a file, often
 - Manually add and clear species with buttons and delete
 - Populate from Oligomer Maker using either isolated rows (see equation on previous slide) or by taking any possible combination from all rows
 - Match Peak to Oligomers
 - May be matched to isolated rows or any possible combination of rows from Oligomer Maker
 - Shows the measured Peak Mass, the nearest match, the difference between the mass and the match, and the number of subunits + the name of each oligomer

Other Useful Tools

Batch Process

- Batch Process: Automatically applies the current settings to every selected text file, runs the program, and saves the state
- Batch Process Unfixed Data Ranges: Runs in batch with all of the same settings except the m/z and arrival time ranges. The m/z and arrival time ranges can be set independently ahead of time for each file.
- Batch process Raw to Text: Automatically converts each Raw file selected into a .txt file
 - It will convert to 1D when in 1D mode and both 1D and 2D if in IM mode

Export Peaks' Charge Data

- Exports a 2D grid of peak vs. charge state for downstream analysis
- The type of transformation from m/z to mass is selected under Advanced
 - Interpolation is best for dense mass compared to sparse m/z
 - Integration is best for sparse mass and dense m/z

Manually Assign Masses

- For a given m/z value +/- some window, all of the intensity will be assigned to a defined charge state
- Pretty much essential for MS/MS experiments
- May be imported from file, often with suffix _manualfile.dat
- Make sure to check box on the Additional Filters/Restraints to tell UniDec to include manual assignments

File > Save Figures > Generate PDF Report

- Needs to be able to run the command "pdflatex" from the command line
- For windows, install MikTex and select install packages automatically from installation options

IM Tool

- Simulate peak locations in m/z vs. arrival time for specific mass and CCS values
- For uncalibrated T-wave data, this is a way to guess at the parameters

Twitter Extension:

- Tweet your spectrum!
- "Bringing Mass Spectrometry to the Masses"
- Be a mass spectrometry social media pioneer

Some Tips

- Start general and gradually add in restraints
- Watch for main sources of error:
 - Harmonics at double or half mass
 - Typically small
 - Satellites at plus or minus one charge state
 - Obvious from Figure 4
 - No unambiguous peaks
 - Noise/background
 - Often a smear at high charge
- Background subtraction can help
- Better data is always the best solution

Thanks For Using UniDec!

Please let me know if you have questions, suggestions, or find any bugs